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ABSTRACT

The measures of global connectivity such as graph integrity and toughness have
non-polynomial time complexities. This has led to the development of global
average graph vertex connectivity measures that are dependent on combinatoric
counting of number of internally disjoint paths in a graph. Many results related
to average vertex connectivity have been found. This study develops a spectral
form of average vertex connectivity, together with its upper bounds. Using trees,
we demonstrate that the new definition and its upper bounds are more related to

ordinary graph parameters.
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CHAPTER 1

INTRODUCTION

1.1. Introduction and background

One most important tool mathematicians have developed is the application of lin-
ear algebra to Graph Theory. This has become to almost a stand alone field of
Algebraic Graph Theory that uses spectral properties of adjacency matrix, A, of

a graph.

It has been shown that (A)!, is the number of walks of length [ (Godsil & Royle,
2001). The question to ask is whether it is possible to count the number of inter-
nally disjoint paths k,, in a graph say G. The problem one can have is that of
counting paths from walks, and it is very reasonable to assume that a graph has
fewer uv— paths than uv— walks, and also significant to assume that a graph has
fewer paths that are internally disjoint. This is a very interesting puzzle. Since
(A)!, is the number of closed walks in a graph G with adjacency matrix A, then
trace(A') must guide a mathematician in a process of finding the total number

of closed walks and hence simplifying the task of calculating the average vertex

connectivity of a graph.



Connectivity strength can be deduced using a formula that takes number of ver-
tices, n, into account. Beineke et al. (2002) developed independently two similar
formulas for that using combinatoric techniques. They have done so by dividing
the total number of internally disjoint paths in a graph by n("T_l) or n(n — 1).

These quantities are called average vertex connectivity and are denoted by ke.
2w K (u,0)
)

2011) where k(u,v) is the number of internally disjoint paths between u and v.

(Bermond et al., 1984) or kg = Lo M) (Bollobas,

That is kg = woD)

The authors also observed that the average connectivity k is bounded above by
n — 1 where the graph is complete. Clearly, the total number of internally disjoint
paths has no closed form in terms of order n of a graph, otherwise this lemma
(which states that if G has order n, then kg < n — 1, with equality if and only if

G is complete) (Beineke et al., 2002) would talk of exactness and not upper bound.

The authors determined upper bounds of average vertex connectivity and gave
combinatoric proofs. It is clearly seen in Beineke et al. (2002) that average con-
nectivity gives strength of connectivity that is similar to integrity and toughness
though it is easier to compute in polynomial time than the latter. However, the
measure of connectivity in Beineke et al. (2002) is not applicable to all families of
graphs, like in a tree.

One way of improving Beineke et al. (2002) work is to come up with spectral
approximation to the total number of internally disjoint paths. This would also
assist in relating well the connectivity to what happens in a graph especially the
valence sequence. That approach has been taken in this study, and literature does

not have similar work. We use this definition to give the upper bounds of average



connectivity. Since information of a graph is easily stored in the adjacency ma-
trix A, using utile properties of adjacency matrix to estimate the total number of
internally disjoint paths would be much easier than simply counting.

Connectivity has a substantial real life application in disciplines such as Computer
networks and Electricity (determination of positioning of redistribution points or
communication end points that can affect so many other points when disrupted),
Epidemiology (to help in disrupting the contact networks to prevent propagation
of an infection), and in Criminology (to help in interrupting the criminal networks

created in societies).

1.2. Research Objectives

1.2.1 Main Objective

The main objective of the research is to propose a spectral representation of av-

erage vertex connectivity and its upper bounds.

1.2.2 Specific Objectives

Specifically, we would like to:

1. give a definition of average vertex connectivity in spectral form.

2. derive upper bounds of average vertex connectivity using adjacency matrix

properties.

3. compare tightness of spectral and combinatorial upper bounds of average

connectivity.



1.3. Rationale of the Study

Spectral Graph Theory is a well established branch of graph theory that also
can be applied in graph theory problems. If successfully applied to approximate
average number of internally disjoint paths, the average vertex connectivity would
be much easier to calculate. This is so because information of complicated graphs
is easily stored in adjacency matrices as compared to drawings in combinatoric

graph theory.

1.4. Overview of the thesis

The main contribution of the study is the formulation of the spectral definition of
the average vertex connectivity of a graph and its upper bounds. In Chapter 2,
we define some basic concepts that are salient to the content of study including
some characteristics of a graph, some classes of graphs and properties of an adja-
cency matrix. In Chapter 3, relevant literature has been reviewed on the concept
of connectivity and the global measures of connectivity such as toughness and
integrity which led to the development of other global parameters such as average
vertex connectivity that can be easily computed in polynomial time. In Chapter
4, methodology and results are presented which include the definition of spectral
average vertex connectivity and its justification. It has been shown that the pa-
rameter M ¢ gives the absolute bounds in its application in complete graphs, thus
more tighter than kg. Further, we develop several upper bounds of this spec-
tral average connectivity whose applications are made in a number of families of

graphs to show their consistency with average vertex connectivity. Examples are



given for clarity. Finally, Chapter 5 presents the conclusion of all the work in the

study.



CHAPTER 2

PRELIMINARIES

We present the needed preliminaries relating to graph theory, distance and con-
nectivity of a graph, and fundamental facts in spectral graph theory pertinent to

this study, which include properties of adjacency matrix.

2.1. Graph and its characteristics

Definition 1 Graph (Diestel, 2016)

A graph G is an ordered triple (V(G), E(G), ¥¢) consisting of a nonempty set V (G)
of vertices, a set F(G), disjoint from V' (G), of edges, and an incidence function ¢¢
that associates with each edge of G an unordered pair of (not necessarily distinct)
vertices of G. If e is an edge and u and v are vertices such that g (e) = uv, then
e is said to join u and v; the vertices u and v are called the ends of e.

The order of graph G, written n(G), is the number of vertices in G, and the size

of graph G, written e(G), is the number of edges in G.

Definition 2 Finite, trivial and simple graphs (Bapat, 2010)



A graph is finite if both its vertex set and edge set are finite.

We call a graph with just one vertex trivial and all other graphs nontrivial.

A graph is simple if it has no loops and no two of its links join the same pair of
vertices.

In this study, we focus only on finite graphs, and so the term ’graph’ always means

"finite graph’.
Definition 3 Vertex degrees (Barriere, 2013)

The degree or valency dg(v) of a vertex v in G is the number of edges of G inci-
dent with v, each loop counting as two edges. We denote by 6(G) and A(G) the
minimum and maximum degrees, respectively, of vertices of G. If every vertex of
G has the same degree, the graph is called Regular. A regular graph with vertices
of degree k is called a k-reqular graph or regular graph of degree k.

We also encounter counting problems about subgraphs. One of which is the count-
ing of edges. This is done by using vertex degrees. The resulting formula is an
essential tool of graph theory, sometimes called "The First Theorem of Graph

Theory’ or the 'THandshaking Lemma’.
Proposition 1 Degree-Sum Formula (Plesnik, 1984)

If G is a graph, then >~ ) da(v) = 2¢(G).

Proof

Summing the degrees counts each edge twice, since each edge has two ends and
contributes to the degree at each end point ll

Definition [3] and Proposition [I] have several immediate corollaries such as those

given below.



Corollary 1 (Roberts & Tesman, 2009)

In a graph G, the average vertex degree is %, and hence 6(G) < 29 < A(G).

Corollary 2 (Brandt & Veldman, 2009)

Every graph has an even number of vertices of odd degree. No graph of odd order

is regular with odd degree.
Corollary 3 (Gross et al., 2019)

A k—regular graph with n vertices has "7’“ edges.

2.2. Some classes of graphs

Definition 4 Complete, Empty and Bipartite graphs (Bapat, 2010)

A simple graph in which each pair of distinct vertices is joined by an edge is called
a complete graph. It is denoted by K,.

An empty graph, on the other hand, is one with no edges.

A bipartite graph is one whose vertex set can be partitioned into two subsets X
and Y, so that each edge has one end in X and one end in Y'; such a partition
(X,Y) is called a bipartition of the graph. A complete bipartite graph is a simple
bipartite graph with bipartition (X, Y") in which each vertex of X is joined to each

vertex of Y7 if | X| = m and |Y| = n, such a graph is denoted by K, ..

Definition 5 Walks, Trails, Paths and Cycles (Fiol et al., 201/)



A walk in a graph is a sequence of (not necessarily distinct) vertices vy, vg, ..., Vg
such that v;v;41 in E(G) for i = 1,2,...,k — 1. Such a walk is sometimes called a
vy v, walk, and vy and vy are the end vertices of the walk. If the edges e, e, ..., e
of a walk are distinct then the walk is called a trail.

If the vertices in a walk are distinct, then the walk is a path. A family of paths in
G is said to be internally-disjoint if no vertex of G is an internal vertex of more
than one path of the family.

A walk is closed if it has positive length and its origin and terminus are the same.
A closed trail whose origin and internal vertices are distinct is a Cycle. Just as
with paths we sometimes use the term ’cycle’ to denote a graph’ corresponding to
a cycle. A cycle of length k is called a k—cycle; a k—cycle is odd or even according
as k is odd or even. A 3—cycle is often called a triangle. These lead us to a lemma

about walks and paths.

Lemma 1 (Ghosh & Boyd, 2006)

In a graph G with vertices u and v, every v~ v walk contains a u v path.

proof

Let W be a u”v walk in G. We prove this theorem by induction on the length of
W. If W is of length 1 or 2, then it is easy to see that W must be a path.

For the induction hypothesis, suppose the result is true for all walks of length less
than k, and suppose W has length k. Say that W is u = wqg, wy, wa, ..., wr_1, W = v
where the vertices are not necessarily distinct. If the vertices are in fact distinct,
then W itself is the desired u”v path. If not, then let j be the smallest integer such
that w; = w, for some r > j. Let Wy be the walk u = wo, ..., w;, Wyy1, ..., W = v.

This walk has length strictly less than k, and therefore the induction hypothesis



implies that W contains a u—v path. This means that W contains a u—v path.

Lemma 1 helps us to understand graph connectedness as described in the defi-

nitions given below.

Definition 6 (Halin, 1969)

A graph G is connected if it has a u—wv path whenever u, v € V(G) (otherwise, G is
disconnected). If G has u— v path, then u is connected to v in G. The connection
relation on V(G) consists of the ordered pairs (u,v) such that w is connected to

V.

Definition 7 (Bauer et al., 2006)

An graph G = (V; E) is said to be k - connected if |G| > k and we cannot obtain
a non-connected graph by removing k£ — 1 vertices from V.

Hence, the vertex-connectivity or simply connectivity kg of a graph G is the min-
imum cardinality of a vertex-cut (set of all vertices distinct from two nonadjacent
vertices) of G if G is not complete, and kg = n — 1 if G = K,, for some positive
integer n. Hence k(G) is the minimum number of vertices whose removal results

in a disconnected or trivial graph.

Definition 8 Trees (Beezer, 2009)

A graph with no cycle is acyclic. A forest is an acyclic graph. A tree is a connected
acyclic graph. A leaf (or pendant vertezr) is a vertex of degree 1. A spanning
subgraph of G is a subgraph with vertex set V(G). A spanning tree is a spanning

subgraph that is a tree. These facts lead us to a corollary.

10



Corollary 4 (Beezer, 2015)
(a) Every edge of a tree is a cut-edge.
(b) Adding one edge to a tree forms exactly one cycle.

(c) Every connected graph contains a spanning tree.

2.3. Diameter and Radius

Two of the most commonly observed parameters of a graph are its radius and
diameter. The diameter of a connected graph G, denoted diam(G), is the maxi-
mum distance between two vertices. The eccentricity of a vertex is the maximum
distance from it to any other vertex. The radius, denoted rad(G), is the minimum
eccentricity among all vertices of G. Of course the diameter is the maximum ec-
centricity among all vertices.

For a connected graph G : rad(G) < diam(G) < 2rad(G) (Bollobas, 1998). The
upper bound follows from the triangle inequality. The radius and diameter are eas-

ily computed for simple graphs, and the following are some facts about them.

1. Complete graphs: diam(K,) = rad(K,) =1 (for n > 2) (Caccetta & Smyth,

1992).

2. Complete bipartite graphs: diam(K,,,) = rad(K,,) = 2 (if n or m is at

least 2).
3. Path on n vertices: diam(P,) =n — 1;rad(P,) = [%52].

4. Cycle on n vertices: diam(C,) = rad(C,) = |5]. (Dankelman & Oeller-

11



mann, 2003)

Note that cycles and complete graphs are vertex-transitive, so the radius and
diameter are automatically the same (every vertex has the same eccentricity).
The centre is the subgraph induced by the set of vertices of minimum eccentricity.
Graphs G where rad(G) = diam(G) are called self-centred. The centre of a graph
forms a connected subgraph, and is contained inside a block of the graph (West,

2001).

2.4. Adjacency Matrix

We first define an adjacency matrix and thereafter describe some of its properties

useful in this study.

Definition 9 Adjacency Matriz (Sheffer, 2003)

Let G be a graph with V(G) = 1,....,n and E(G) = ey,...,e,. The adjacency
matrix of G, denoted by Ag, is the n X n matrix whose rows and the columns
are indexed by V(G). If i # j then the (i, j)-entry of Ag is 0 for vertices ¢ and j
non-adjacent, and the (i, j)-entry is 1 for ¢ and j adjacent. The (i,4)-entry of Aq

is 0 for i = 1,...,n. We often denote Ag simply by A.

2.4.1 Spectrum of Adjacency Matrix

Studying graph theory using the properties of adjacency matrix A is called Spec-
tral graph theory. A spectral property is a property that is related to the spectrum
of a matrix, which is an array consisting of numbers called eigenvalues and their

frequencies are called multiplicities.

12



An eigenvalue of A is a number, A, such that there exists a non-zero vector,
¥ for which A7 = A\7. Since determination of eigenvalues is hard, we usually
find a number, A, for which the matrix A — AI is singular. Thus [ is the matrix
such that Al = IA = A. If one expresses A — Al in reduced echelon form, the
number of rows containing all zeros in matrix A — Al is called the nullity of A.

The nullity represents multiplicity of eigenvalue .
Definition 10 Spectrum of a graph (Sheffer, 2003)

The spectrum of a graph G is the set of eigenvalues (with multiplicity) of the
adjacency matrix of G.

For a graph G = (V; E) with n = |V/| vertices, the n x n adjacency matrix A has
n eigenvalues, when counted with multiplicity. Further, since A is symmetric, all
n eigenvalues will be real. For small graphs, the easiest way to find the spectrum

is to find the roots of the characteristic polynomial x(z) = det(xI — A).
Definition 11 Cospectral graphs (Kim, 2016)

Graphs with the same spectrum (that is, with adjacency matrices having the same

eigenvalues with the same multiplicities) are called cospectral.
Definition 12 Trace

Let A be an n by n matrix, then the trace of matrix A, ¢r(A) is defined as
trace(A) =3 7 (A)w (Strang, 2006). This definition leads us to the fundamental

lemma.

Lemma 2 Alternative Definition of Trace of AB (Lipschutz, 1991)

13



n n

If A and B are square matrices then Trace(AB) = Z Z(A)M(B)kZ
proof

From the definition of trace, we must have trace(AB) = Z(AB)ii

i=1
n

However, the definition of elements of a matrix states that (AB); = Z(A)Z-k(B) ki»
k=1
and making this substitution into the above equation we have trace(AB) =

> (Au(B) W

i=1 k=1

Theorem 2.4.1 Number of closed walks of a given length (Mader, 1979)

Consider a graph G with spectrum {A;, Ao, ..., A\, } and write CW (k) for the num-
ber of closed walks of length &k in G. Then CW (k) = Y7 | AF.

proof

Since the closed walks are precisely the walks that start and end in the same place,
we have CW (k) = >,y Wii(k) and CW (k) = >~/ (AF);; = Trace(A*), the trace
of A¥,

We know that the trace of a matrix is the sum of its eigenvalues (Ghosh & Boyd,
2006). Further, we know that the eigenvalues of a matrix power are the powers of
the eigenvalues of the original matrix (Ghosh & Boyd, 2006). Hence the eigenval-

ues of A* are AV, A5 . AF and we have CW (k) = Trace(A¥) = > " \' W
=1

14



CHAPTER 3

LITERATURE REVIEW

3.1. Introduction

In this chapter we look at efforts made by mathematicians in developing means
of measuring connectivity and further advances taken to derive methods of global

measures of connectivity.

3.2. Classical Connectivity

Since the development of the branch of Mathematics of graph theory, researchers
have tried to measure connectivity of graphs (Fiol et al., 2014). The simplest
one has been that of just counting the number of edges or vertices needed to be
removed in order to create a graph with many components or that which is trivial.
Therefore, connectivity is the minimum number of edges or vertices to be deleted

until we get a trivial or a disconnected graph, usually denoted by symbol K.

This connectivity definition has been important in that it has been used by almost
all researchers in graph connectivity in order to derive useful properties. A good

example is that of Beineke et al.(2002) who use this to determine a lower bound

15



of their newly constructed average connectivity.

Another example is Fiedler (1973), who vigorously uses this definition to show
that the second smallest eigenvalue of a Laplacian matrix can measure the alge-
braic connectivity as well as the strength of connectivity of a graph. That is the
second smallest eigenvalue of a Laplacian matrix is zero if and only if the graph

is disconnected.

The main set back of the definition is that it fails to give the strength of con-
nectivity of a graph (Aslan, 2014). For example, every tree has connectivity of

size 1, but some trees have stronger connectivity (Chung, 1988).

3.3. Strength of Connectivity

If a graph represents a network, one may wish to study the number of edges from
each point to find out whether they are related to eigenvalues of A or not. The

number of edges from a single vertex is called valency or degree of the vertex.

Usually in networks, someone might be interested in finding the strength of con-
nectivity. The simplest way is that of finding the number of vertices or edges that
can be deleted for one to obtain de-linked graphs, which are called components
. Sometimes this is not possible, so one can keep deleting vertices or edges until

there are no edges.

In this case one might believe that the higher the connectivity the higher the

16



strength of the connectivity. However, this has been refuted by researchers study-
ing mainly the matrix D— A, where D is a diagonal matrix that contains a sequence
of degrees of vertices of a graph in the major diagonal. The second smallest eigen-
value of this matrix, D — A, which is usually called Laplacian matriz, L, is called
Fiedler Value or Algebraic Connectivity. If this number increases , then it can
be hard to disconnect a graph, say G. This measure does not use directly the
number of vertices in graph G. In other words, it does not use the order of G,
which is contained in A. The number of edges is also called the size of G and is

also contained in A.

3.4. Average Vertex Connectivity

One natural question could be whether one can deduce the strength of connectiv-
ity using a formula that takes number of vertices, n, into account. This question
was answered by Beineke et al. (2002) who developed independently two similar
formulas for that. The technique was that of considering paths (a path is a trail in
which all vertices, except possibly the first and last, are distinct) in a graph that
do not share common vertices. Such paths are called internally disjoint paths. So
one can count these in a graph. If there are no closed paths in a graph then it is

called a tree if it is connected, otherwise is called a forest.
One fact to consider is whether there is a path between every pair of vertices.

If such is a case, the graph is called complete graph. Any complete graph on n

vertices has @ edges.

17



One simple way of measuring connectivity is by dividing the total number of

internally disjoint paths in a graph by 21 or n(n — 1). These quantities are

2w Fu, )
()

(Kim, 2016) where k(u,v) is the number

called average vertex connectivity and are denoted by k. That is kg =

> v k(u,0)

(Beineke et al., 2002) or kg = n(n—1)

of internally disjoint paths between u and v.

3.5. Attempts to Measure Connectivity Strength

Some researchers like Bagga et al. (1993) could believe that if many edges or
vertices are removed from a graph to disconnect or trivialize it, then that graph
is strongly connected. As such, they created classification schemes for measur-
ing reliability and vulnerability of connectivity in networks. On the contrary, if
a graph is a tree, there is only one vertex that can be removed to disconnect it
(Abiad et al., 2018). However, there are trees which can have strong connectivity
but the vertex that can be removed has higher valence (Dankelmn & Oellermn,
2003). Hence, Bagga et al.(1993) concluded that this is not a global measure of

connectivity.

This has led to many researchers to think of global measures of connectivity.
One of them is Chvatal (1973) who developed a measure of global connectivity
called Toughness. This measure relates the number of components and vertices
to be removed for the graph to be disconnected. This measure is important in
that its magnitude could give the strength of connectivity, not only as number of
vertices to be removed, but also shows the consequences of removing the vertices

in the graph, thus, the number of components that can be created upon deletion

18



of vertices. This measure is not easy to understand (Johnson, 1974) and is non-
polynomial hard to compute(NP-hard) (Mader, 1979). Hence, this measure has
led to creation of many conjectures and theorems related to it. Bauer et al. (2006)

listed 99 theorems and conjectures related to toughness.

This problem made Fiedler (1973) consider measuring connectivity using second
smallest eigenvalue of Laplacian matrix, as described in the first paragraph. The
advantage is that the higher the algebraic connectivity the higher the toughness of
the graph (Goddard & Oellerman, 2011). In addition, the measure has been found
to be more useful than toughness in analyzing synchronizability and robustness of

networks.

Fiedler (1973) proves the property that helps researchers to consider Fiedler Value
as a measure of global connectivity (West, 2001). The proof considers existence of
a zero eigenvalue in a Laplacian matrix (Harris et al., 2008). However, it is well
known that the lowest eigenvalue of any Laplacian matrix is zero (Godsil & Royle,
2001). Nevertheless the Fiedlers Value does not relate well to other parameters of

a graph, like valence sequence (Gross et al., 2019).

Hence, some researchers considered modifying toughness of a graph to develop
a better measure. Such attempts led to the development of a measure called In-
tegrity (Chvatal, 1973). Integrity is an alternative measure of the vulnerability
of graphs to disruption caused by the removal of vertices, and the order of the

largest remaining component (Bauer et al., 2006). Clearly, the measure is not
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directly related to the graph being disconnected, rather it is a parameter of a set

of vertices.

3.6. Dealing with NP-hard Connectivity Measures

Since integrity and toughness have non-polynomial hard computation time com-
plexity, just like toughness (Bauer et al., 2006), most researchers considered cre-
ating a measure of connectivity that does not only indicate whether a graph is
connected or not, but that shows what happens in a graph (Chartrand & Oeller-
man, 1993). This prompted researchers to investigate working out average vertex
or edge connectivity. Focus was put on coming up with a measure that is also
computationally efficient.

One way of doing this is that of counting the sum of numbers of internally disjoint
paths from each vertex in a graph and dividing it by a number related to vertex
count when a simple complete graph is reproduced from the same graph. The first
attempt to do this was made by Beineke et al. (2002) who chose to divide the sum
of number of internally disjoint paths by twice the order of a complete graph that
can be reproduced. The upper bounds of the measure of connectedness so created
were derived and established. It is much easier to use network flow techniques in
her definition of a measure of connectivity to compute the value of average con-

nectivity so defined. Thus, there was an improvement in computational time.

However, the definition of average connectivity derived by Beineke et al. (2002)
could work efficiently only for multipartite graphs. The justification of dividing

the sum of the number of internally disjoint paths by twice the order of a simple

20



complete graph that can be reproduced was not justified. A simple improvement
of not doubling the order of complete graph that can be reproduced could be sug-

gested. This was adopted by Beineke et al. (2002).

Beineke et al.(2002) definition of average connectivity can be extended to any
type of graph. Furthermore, Beineke et al. (2002) observe that the lower bound
of their average connectivity is 1, despite the fact that a closed form of number of

internally disjoint paths in a tree does not exist.

In addition, Beineke et al. (2002) consider their connectivity to be bounded
above by n — 1 for a complete graph whose order is n. However, the sum of
the upper bound for internally disjoint paths in a simple complete graph is not

established.

21



CHAPTER 4

METHODOLOGY AND RESULTS

4.1. METHODOLOGY

4.1.1 Introduction

We define a measure of global connectivity using algebraic graph theory parame-
ters, especially adjacency matrix, A. We then show that the measure is an upper
bound of Beineke et al.(2002) measure of global connectivity in order to justify
as why it works by finding an approximation to the sum of numbers of internally

disjoint paths using the spectral number of walks lemma.

4.1.2 Spectral Definition of Average Connectivity of a Graph.

Our main contribution is the definition of average vertex connectivity in spectral

graph theory. We present this in the following definition.

4.1.3 Definition

Let G be a graph whose average connectivity is k¢, diameter is d, adjacency matrix

A, order n, and radius r. Then spectral average vertex connectivity M is given
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Z <Z(Al)uv - trace(Al)>
T - - : S ,d>r
Z (Z(Al)m, - trace(Al)>
=1 u,v 7 d—=r
\ n(n - 1)

4.1.4 Justification of the new result.

In summary, from the work of Beineke et al. (2002), the average vertex connectiv-
ity, k¢, has been defined as the quotient of the total number of internally disjoint

paths, >, ka(u,v) and (%). That is
_ Zu,v kg(u,v)
kG — T
()
The number of pairwise internally disjoint paths is by counting, which might be

complicated in some situations.

This study proposes an estimation of all internally disjoint paths simply by getting
d

2

=1

1 . ,
the adjacency matrix of the graph. This is given by Mg = = Z (Z (A")yw — trace(A")

U,V

=1

. 1 - ; i) .
if d > r, or 5 Z (Z(A Juw — trace(A )) if d = r. This is so because from the

U,V

l
number of walks lemma, Z Z(Ai)uv is twice the number of u — v walks from
=1 wu,v
length 1 to length [ since the adjacency matrix is a symmetric matrix. The num-
I I
ber of closed walks is estimated by Ztrace(Ai). Subtracting Ztrace(Ai) from

i=1 1=1
l

Z Z(Ai)uv gives twice the number of u — v paths. Hence, Mg estimates the
:;ngzr of paths from length 1 to [. In our situation, we have, in case (i), | = d
and in case (i),  =r + 1.

When we divide this Mg by M, the 2s cancel each other out. That is

2
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Z (Z(A’)W - trace(Aﬂ) , Z (Z(AZ)W - trace(Ai)>
| 2 Xn(n—l): | n(n —1) = Me.

Depending on particular graph construction, it can be observed that kg = Mg
or kg < Mg. Both equality and inequality situations are shown in the following

examples.

4.2. RESULTS

To show the supremacy of the Spectral average vertex connectivity over the com-
binatoric average vertex connectivity, we show it as an upper bound of Beineke et

al. (2002) definition. We use the new definition to prove results on bounds.

4.2.1 Spectral average vertex connectivity of a graph as an up-

per bound of average vertex connectivity of a graph.

We will use some lemmas such as the spectral number of walks lemma (West, 2001)
to prove our main result. As a preliminary to this lemma, one must understand the
product rule of counting (Rosen, 2019) which states that if a job of size k =t +p
can be done in m ways to finish size ¢, and then n ways to finish size p, then there
are mn ways of doing this job; and the sum rule of counting (Rosen, 2019) which
states that if a person can do either job A in m times or job B in n times but can
not do both at the same time, then there are m + n ways of doing either of the

jobs. The lemma is stated as given below.

Lemma 3 (West, 2001) Spectral number of walks lemma
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Let X be a graph with adjacency matrix A. Then the number of walks from u — v
walks of length [ is (A').,

proof

1 ,uv is an edge,
Suppose [ =1, then (A');; =

0 ,otherwise.

But the edge uv is a u — v walk of length 1, hence the lemma holds when [ = 1.
We now assume that (Al)uwj = a;; is the number of u; — v; walks of length [. Let
A = [b].

Hence, by this assumption, for each k = 1,2, 3, ...,n, a; is the number of u; — vy
of length [ and by; is the number of u; — v; of length 1 by the same assumption.
Hence, by product rule of counting, a;;by; is the number of u; — v; walks of length
k + 1 for each k =1,2,3,...n.

But Z JiAr; = (A'A);; = (A1), Therefore, the result holds by induction

on l.l

Now, the following theorem is the justification of the reason why the definition
is really a representation of average vertex connectivity in spectral graph theory.
Thus it emphasizes on both its existence and that it is the upper bound of kq. In
addition, the fact that, in the next section, we are able to use it to prove the result
given by Beineke et al. (2002), is on its own the justification that the equation

really deserves the name.
Theorem 4.2.1
Let M¢ be the spectral average vertex connectivity of graph G, and k¢ be the

average vertex connectivity defined by Beineke et al. (2002). Then Mg is an
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upper bound of k.

proof

Case (i): d > r

When d > r, we choose d to approximate the longest possible length that can be
attained by an internally disjoint path. This estimation is better because every
connected graph has a spanning tree and, in a tree, d is the longest possible path.
We would like to count the number of paths of length at most d. If A is the
adjacency matrix of graph G then (A%, is the number of walks of length i from

u to v.

Pt YA
: .

Hence, the total number of walks of length at most d is
The number of closed walks of length at most d is Zfil trace(A").

It follows that the number of paths of length at most d is

B S D (A — S trace(A?)
a 2

Mg . We divide by 2 because A is symmet-

ric matrix.
But >, , kc(u,v) is the number of unique paths in graph G hence

ka(u,v M
Zu,v k(;(u,v) < MG- Therefore, Zu,v G( ) G

< v
) (5) (5)
et M = ke and & = M.
(5) (5)
Then EG < Mg.
Mg¢ _ Z?:l Zu,v(Ai)uv - Z?:l trace(A’)
(Z) n(n —1)
Case (ii): d=r

L

Hence Mg =

3) B n(nz— 1)] -

[since (
When d = r, we choose d + 1 = r 4+ 1 to approximate the longest length that can
be attained by an internally disjoint path. We add 1 to take care of the cycles

that characterize many graphs in which d = r (Chung, 1988).

We would like to count the number of paths of length at most r + 1. If A is the
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adjacency matrix of graph G then (A%),, is the number of walks of length 7 from

u to w.

r+1 i
. =1 Zu v(A )UU
Hence, the total number of walks of length at most r 4 1 is 2’ :

The number of closed walks of length at most  + 1 is 3.1 trace(A?).

1=

It follows that the number of paths of length at most d is

S (A0 — 5 trace( )

Mg 5

Since », , kg (u,v) is the number of unique paths in graph G, hence

k )
Zu,v kc(u,v) < Mg. Therefore, Z“’” (nG)(u v) < ](\g)G
2 2

ka(u, v _ M _ _ _
Let M — kg and —< = M. Then kg < Mg.
(5) (5)
_ M r ANy — S trace(A
Hence Mg = nG = izt () iz () since (}) = "("2*1)]
(2) n(n —1)
|

4.2.2 Upper bounds on the Spectral Average Vertex Connectiv-

ity of a graph and Applications.

We want to show that the parameter, Mg, gives the absolute bounds in its ap-
plication in complete graphs, thus more tighter than kg. It is a verification of
the significance of M, as an efficient global measure of connectivity. But before
we prove this main result, shown in Theorem [£.2.2] we present several concepts in
Lemmas [ [5land [] to clarify some facts asserted in the study. We further generate
the upper bounds of M. Later, to show the applicability of this new parameter,
we express it and its upper bounds in terms of tree properties and of course, real
life applications of the same are presented.

In the first place, we understand that if A is an adjacency matrix of a graph G,
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then Z (A);; = v;, where v; is the valence of vertex j (Sheffer, 2003). This is
a direct consequence of number of walks lemma. Similarly, (A);; = (A);;, because
any adjacency matrix is a symmetric matrix. This fact leads to the following

lemma.

Lemma 4 (Godsil & Royle, 2001) Adjacency and degree sequence

n
If A is an adjacency matrix of a graph G, then Z A?j = Zvi, where vy, is
1<i,j<n k=1
the valence of vertex k.

proof

From the definition of entry of matrix A?, we must have Afj = Z(A>Zk(A)k]

k=1

Hence, we have

A= ) (AulAyy = S (AulAyy = D (A Y (A =

1<i<n 1<i<n k=1 k=1 1<i<n k=1 1<i<n

Z(A)kjvk-

h=1 n n n

Hence, Z A?] = Z Z(A)kjvk = ka Z (A)k)j = ka Z (A)_]k =
1<i,j<n 1<j<n k=1 k=1  1<j<n k=1  1<j<n

Zv,%. |

k=1

In Linear Algebra, if X\ is the eigenvalue of A corresponding to eigenvector v,
then A\? is the eigenvalue of A% corresponding to eigenvector v. This is so because
A%*n = A(Av) = A(M\v) = A\*v. We use this idea together with the lemma below in

order to prove the other main result of this study that follow.

Lemma 5 (Thogersen, 2006) Trace is the sum of eigenvalues

proof

Suppose A is diagonalizable, then there exists invertible matrix C' such that
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C~1'AC = D is a diagonal matrix, which also implies CDC~! = A.
Now, trace(CDC™') = trace(A). And by the circulatory property of trace, we

have trace(CDC™') = trace(DCC™) = Z(D)zz = Z i [ |
i=1

=1

Lemma 6 (Gross et al., 2019) Spectrum of Complete Graph

If A is an adjacency matrix of a complete graph of order n, then

spectrum(A) = {(n — 1)!, =171}

proof

Let y = (1,1,---,1), then Ay = (n — 1)y, and if y* be a non-zero vector or-
thogonal to ¥, then Ayt = —1y*. Thus —1 and n — 1 are eigenvalues of A. The
nullity of A — —17 = A + I, where [ is identity matrix for matrix multiplication,
is n — 1. Hence, the multiplicity of —1 is n — 1 and the multiplicity of n — 1 is
n—(n-1)=1. [ |

1 n—1
From Lemma [6, we can conclude that spectrum(A?) =

(n—1)* (=1)*

We also use this lemma to prove the significant result of this paper, showing valid-
ity of M, and consequently proving the result asserted by Beineke et al. (2002),

which is presented in the theorem below.
Theorem 4.2.2 M as a tighter upper bound of K.

Let G be a complete graph of order n such that M is its spectral average vertex
connectivity and k¢ is its average vertex connectivity defined by Beineke et al.

(2002). If A is an adjacency matrix of graph G, then
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1. Mg=n—1
2. Kg < Mg =n— 1 Beineke et al. (2002) result.
proof

1. In a complete graph, d = 1 = r (West, 2001). Then we use Case (ii) of
the definition of M to derive the upper bound, so that we substantiate the

accurate tightness of our results as compared to those in combinatoric forms.

2 2
This gives us 7+1 = 1+1 = 2. We take M}, = Z Z(Ai)u,v - Z trace(A")
i=1

=1 u,v
2
But Y ) AL = "AL+> AL

=1 wu,v

1, ifu#o,

Since G is complete, then A,, =
0 , otherwise.
Hence, >~ AL =n(n—1).

If A is adjacency matrix, then )7 A2 = 37", v}, where v is the de-
gree/valency of vertex t in the graph.

But v; = n — 1(Complete graph). Therefore >7 =A% = Y7 (n—1)* =
n(n —1)%

And 2 D un Ay =n(n=1)+n(n—1)> = n(n-1)[1+n—1] = n(n—1)n =
(n — 1)n?

Now, 327 trace(A?) = trace(A') + trace(A?) = 0 + trace(A2) = trace(A?).

But spectrum(A) = {(n — 1)}, =171},

Therefore, trace(A?) = miA? +maA3 + ... + mpA?, where b is the number of
unique eigenvalues, and \; are eigenvalues of A.

So, trace(A?) = myAg + maA3.

Butmi=1,myo=n—1land \y =n—1, Ay = —1.
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Therefore trace(A?) = 1(n —1)*+(n—1)(-1)> = (n—-1>%*+n—-1) =
(mn—1)(n—14+1) =n(n—-1).
This implies that Mg =n%*(n—1) —n(n —1) =n(n —1)(n — 1).

M n(n—1)(n —1)

H Mg = = =n—1=k. |
enee, Mo n(n—1) n(n—1) "

2. Thus k¢ < Mg = n — 1. This follows from the preceding proof and the

justifying theorem, thereby showing that M calculates tighter bounds. W

4.2.3 Upper Bounds of M.

We also derive the tighter upper bound of spectral average connectivity in terms

of other parameters like degree sequence, as asserted in the following theorem.

Theorem 4.2.3

Let G be a a connected graph of order n with vertex degree sequence v; > vy >

... > v,. Then
d n
D> wi=A)
1. Mg < =L= , when d > r
n(n —1)
r+1 n
(v = A)
2. Mg < ==L ,whend=r
n(n —1)

where \; are eigenvalues of adjacency matrix A of graph G.

Proof
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1. LetS—A+A2+ .+ AV

ThenZZA ZS” and > AT <Y 0f

=1 u,v

d
Therefore Z Z (A, Z trace(A") < Z Z vl — Z trace(A").

i=1 wu,v i=1 i=1 t=1

But trace( A) Z M for each A, t =1,2,...,n eigenvalue of A.

t=1

d n
Hence, Mg < Z sz — Z Z)\ or Mg < Z Z . This implies

i=1 t=1 i=1 t=1 i=1 t=1
d n
> -
th tM < i=1 t=1
e = n(n—1)

Furthermore, since ko < M, therefore ke < Mg <

DPBRCEPY
1<i<d,t<n
n(n—1)

Hence, EG <

1<i<r+1,1<t<n
n(n—1)

2. Similarly for d = r, we must have kg <

We also prove the the corollary of Theorem 4.2.3 to show that the results are

consistent, as below.

Corollary 5

Let A be the maximum degree. If A = v; where v{ > vy > v3 > ... > v, are

valences of vertices of graph G, then

Z nA" — Z A

1. Mg < == SEAISER it d > and
n(n —1)
DITUNED SRt
o M, < ==t ISISrLISiEn e
n(n —1)
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Proof
Since A = vy > v, for all t = 2,3,...,n. It follows that v, < A, for all t =

n n
1,2,3,...,n. This implies that v{ < A’ since v, A € N and sz < ZAi = nA’
i=1 t=1
Hence, we have

Mg =), (v —X)

i=1 t=1

SN B!

i=1 t=1 i=1 t=1

=> nAT— YN
i=1 i<dt<n
Z nA" — Z A

’ MG _ M¢ _ 1<i<d 1<i<d,1<t<n -
n(n —1) n(n —1)

And the other results follow.

The validity of the results derived in Theorem and Corollary [5|is checked in
a complete graph, and

this explains as to why the Spectral average vertex Connectivity is more efficient

than the Combinatoric average vertex connectivity.
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4.2.4 Spectral Definition in a Complete Graph.

Since in complete graph

d=1=r
A=n-1
A1 =n — 1, with multiplicity (1)

Ao = — 1, with multiplicity (n — 1).

Then Z nA’ :Zn(n —1)

1<r+1 1<2

=n(n —1)' +n(n—1)?
=n(n—-1)1+n-1)

=n?(n —1)

and

S A= (- 1))+ (~1)i(n—1)

1 <r+1,t<n 1 <r+1

=0+ 1(n —1)*+ (n — 1)(=1)
=(n—1)>+ (n—1)
=n—1)(n—1+1)

=n(n —1).
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So,

n(n —1)
n(n—1)(n—1)
n(n —1)
=n — 11

This proves Beineke et al. (2002) result successfully (substantiating the tightness
of the bounds). It shows that the results on Theorems and Corollary [5| are

even more consistent with properties of average vertex connectivity.

4.2.5 Examples to demonstrate that the two definitions are the

same.

Examples where the Equality holds (kg = M).

We will take examples from Beineke et al. (2002) paper and compare results.

Example 1

From Figure 1, page 32, G| (Beineke et al., 2002) - Calculating k¢ of G.

7. Zu,v kG(uvv) . 10 B E -
¢ Tam—1)/2 GG-1)/2 10

1

This study - calculating M of G,
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Table 4.1: Matrix for internally disjoint paths of G

V1 | U | V3 | Vg | Us
v | 0] 1T 1 ]1]1
Vg 1711
U3 0|11
V4 0 1
Vs 0

We want to find the average connectivity of the same graph using M.
We begin by identifying the radius(r) and diameter(d) of this graph from the

distance matrix given below.

Table 4.2: Distance Matrix of G4

v1 | vo | v3 | vg | U5 | Eccentricity
vi | 0| 111222 2
ve | 11O |1 |11 1
v | 2| 1101 2] 2 2
ve| 211120 2 2
vs | 21112120 2

From the table, r = 1 and d = 2; which means d > r. So we use case 1. That’s

Z <Z(Al)w — trace(Ai)>

i=1

MG = v : d > 7
n(n —1)

A, A2 — A) — A2

Substituting, we have 2 A+ 2, uv5(5tra(i§( ) — trace(A?)

Getting the adjacency matrix(A) of the graph, we employ MATLAB with the

following algorithm:

function experiment_Malotal
A=[010 00O0;...

101 1 1;...

01 0 00;...

01 0 00;...

0 1 0 00];
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b=A"2;

s=sum(sum(A) )+ sum(sum(b));

t=trace(A)+trace(b);

[n pl=size(A);

d=n*(n-1);

M_bar=N/d end

The output is as follows:

>> experiment_Malotal

A= 0 1 0 0
1 0 1 1
0 1 0 0
0 1 0 0
0 1 0 0

b= 1 0 1 1
0 4 0 0
1 0 1 1
1 0 1 1
1 0 1 1

s = 28

t =8

n=>5

p=25
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N = 20
d = 20
M_bar =1

Hence, kg = Mo 1
Example 2

In Figure 1, page 32, G (Beineke et al., 2002) - Calculating kg of G.

Ga,

Table 4.3: Matrix for internally disjoint paths of G5

V1 | U2 | V3 | Vg4 | Vs
v | 0] 31331
Uy 0133 ]1
Vs 0 3 1
V4 0 1
Vs 0
= 2w ke(u,v) 22 2 _,,

(n(n—1)/2 ~ (G-1)/2 10

This study - calculating M of G..
We want to find the average connectivity of the same graph using M. We identify

the radius(r) and diameter(d) of this graph from the distance matrix given below.
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Table 4.4: Distance Matrix of Gy

vy | V2 | v3 | V4 | v5 | Eccentricity
vi | 0O 1] 1]1]2 2
ve | 1O 1] 1] 2 2
v | 1| 1101 1] 2 2
vy | 11T ]1 0|1 1
vs | 2121210 2

From the table, r = 1 and d = 2; which means d > r. So we use case 1. That’s

Z (Z(Al)m, - trace(Ai)>

=1 u,v

MG: d>r.

n(n—1 ’
( Z)A}w + > A2 —trace(A) — trace(A?)
55— 1) ‘

Getting the adjacency matrix(A) of the graph, we employ MATLAB with the

Substituting, we have

following algorithm:

function experiment_Malota2
A=[0 1 110;...
101 1 O0;...
11 0 10;...
1 1 1 01;...
0 0 0 10]
b=A"2
s=sum(sum(A))+ sum(sum(b))
t=trace(A)+trace(b)
[n pl=size(A)
n=n
N=s-t
d=n*(n-1)

M_bar=N/d
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end

The output is as follows:

>> experiment_Malota2

A= 0 1 1
1 0 1
1 1 0
1 1 1
0 0 0

b= 3 2 2
2 3 2
2 2 3
2 2 2
1 1 1

s = b8

t =14

n=>5

p=>5

n=>5

N = 44

d = 20

M_bar = 2.2000

Hence, kg = M R



Example 3

This example is deliberately chosen so that case 2 of the definition of M« should
be used.

Using a regular graph with n=3 (k3), we label it Gj.

Calculating k¢ of Gs.

Table 4.5: Matrix for internally disjoint paths of G3

V1 | U2 | U3
U1 0 2 2
Vo 0 2
U3 0
7. Zu,v kG(u? U) 6 6

S )2 T BEo1)2 3

This study - calculating M of Gj.
We want to find the average connectivity of the same graph using M.
We begin by identifying the radius(r) and diameter(d) of this graph from the

distance matrix given below.

Table 4.6: Distance Matrix of G5

vy | vo | v3 | Eccentricity
v | 0111 1
(%) 1 0 1 1
vy | 1 | 110 1
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From here, r = d = 1. So we use case 2. That is

Z <Z(Al)w - trace(Ai)>

=1 u,v

Mg =

d=r.
n(n—1) ’ "

Weadduptor=1+1=2

STAL 45T A% — trace(A) — trace(A?)
55— 1)

Getting the adjacency matrix(A) of the graph, we employ MATLAB with the

Substituting, we have

following algorithm:

function experiment_Ridl

A= [0 1 1;...
1 0 1;
1 1 0]
p=A"2

s=sum(sum(A))+sum(sum(p))
t=trace(A)+trace(p)

[n pl=size(A)

n=n
N=s-t
d=n*(n-1)
M_bar=N/d
end

The output is as follows:

>> experiment_Ridl

A= 0 1 1
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p= 2 1 1
1 2 1
1 1 2

s = 18

t =26

n=3

p=3

n=3

N =12

d =6

M_bar = 2

Hence, EG S MG [ |
This example verifies the result of Beineke et al. (2002) which states that for any
complete graph ke < n— 1 where n is order of a graph. This example also verifies

the fact that for a complete graph M = n— 1, which is contribution of this study.

Example showing kg < M.
Depending on the a particular graph construction, the value of kg might be smaller

than the value of M.
Example 4

Using graph H; in Beineke’s et al. (2002) paper, page 33, Figure 2.
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Calculating k¢ of H;.

Table 4.7: Matrix for internally disjoint paths of H;

V1 | U2 | V3 | Vg | Vs
vr | 021112
Vg 011 ]1]2
s 011
V4 0 1
Vs 0
= _ 2 be(u,v) 13 13 _ .

(n(n—1))/2 ~ (BG-1)/2 10

This study - calculating M of H;.
We want to find the average connectivity of the same graph using M.
We begin by identifying the radius(r) and diameter(d) of this graph from the

distance matrix given below.

Table 4.8: Distance Matrix of H;

v1 | Vo | v3 | vg4 | v5 | Eccentricity
vy | 01231 3
v | 1 10| 11] 2|1 2
v | 21110112 2
ve| 3121 1]10]3 3
vs | 1| 1121130 3

From here, r = 2 and d = 3; which means d > r. So we use case 1. That’s

> (Z(Ai)m, - tracew))

R i—1 ,
MG:Z &0 ,d>T

n(n —1)
Al A? A3 — A) — A?) — A3
Substituting, we have 2 Awt 2 A T2 Ay 3 (t;zicelg ) — trace(47) — trace(4’)
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Getting the adjacency matrix(A) of the graph, we employ MATLAB with the fol-

lowing algorithm:

function experiment_Rid2
A=[0 1 O 0 1;...
1 0 1 01;...
0 1 0 10;...
0 0 1 00;...
11 0 00]
b=A"2
b1=A"3
s=sum(sum(A))+ sum(sum(b))+sum(sum(bl))
t=trace(A)+trace(b)+trace(bl)
[n pl=size(A)
n=n
N=s-t
d=n*(n-1)

M_bar=N/d end

The output is as follows:

>> experiment_Rid2

A= 0 1 0 0 1
1 0 1 0 1
0 1 0 1 0
0 0 1 0 0
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b= 2 1 1 0 1
1 3 0 1 1
1 0 2 0 1
0 1 0 1 0
1 1 1 0 2
bl =2 4 1 1 3

1 4 0 2 1
1 0 2 0 1
3 4 1 1 2

s = 80

t = 16

n= 5

p= 5

n= 5

N = 64

d = 20

M_bar = 3.2000

Hence, ko < Mo 1

The above presented examples show that, really, kg < M.
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4.2.6 Application in Trees.

To emphasize its effectiveness, the spectral definition of average vertex connectiv-

ity and its bounds derived above are here expressed in terms of properties of a tree.

To begin with, we take into consideration the following facts about trees:

(i) Z A} = 2|E|, where |E| is the size of graph, say G (number of edges).

t=1

b
(ii) If G is a tree, then it is a bipartite graph, hence Z)xf”l = 0,vVi € N.
t

However, in a tree |E| = n — 1 (West, 2001). So that Z)\f = th =
t=1 t=1

2\E| =2(n —1).

Hence, there exists w € R such that

Zn: N =w Zn: A
i=1 =1

d 1
We choose w > L§J’ ifd>randw> L%J, ifd=r.

Hence, from Corollary [5] we get the following corollary.
Corollary 6

Let M be the average vertex connectivity of graph G of order n, whose maximum
degree, diameter and radius are denoted by A, d and r respectively. If G is a tree,

then
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¢ d
- d
ZnA’—Z §J (n—1)
i=1 L
, d>r
My — . n(n—ll—l
ZnAi—2 7"2 J(n—l)
i=1 .
d:
( n(n — 1) =T

The validity of the results in Corollary [6] are checked in the examples to follow.

Example 5

V1 v2
o

o

Figure 4.1: First Tree

Table 4.9: First Tree Distance Matrix

vy | v | e(v;)
V1 0 1 1
(%) 1 0 1

From the graph in Figure 1, n =2 and A = 1.

From the distance matrix above, d =1 =r.

2

B ;2(1)1‘ —2 EJ (2—-1)

Remarks
(i)This is an example where kg = Mg
(ii) If we delete one vertex, we discover that it is only one vertex that is affected.

The expected number of vertices that are affected is approximated by
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|Mq| = |1] = 1. This is also the valence of the vertex that can be deleted to lead

to a trivial graph, showing that M is applicable in trees.

Example 6

Vi Va V3
o o

Figure 4.2: Second Tree

Table 4.10: Second Tree Distance Matrix

e(vi)
2
1

(%

I~
=

<
o
w

(%1
(%
U3

o= o
=1
O | DN

remarks

(i) This is an example where kg < Mg

(ii) If we delete one vertex, the whole graph will be disconnected, that is k = 1 =
Mg.

However, there are 2 vertices which are affected.

The number of vertices affected by deleting these vertices is predicted by | Mg| =

|2.3] = 2. This is also the valence of a vertex that can be deleted to produce the
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effect. It is also the number of vertices that can be deleted to produce a trivial

graph.

Example 7

vl
2

Figure 4.3: Third Tree

Table 4.11: Third Tree Distance Matrix

v | vy | vz | vy | e(v;)
v | 0] 21211 2
vy | 210211 2
w2120 1] 2
vy | 1 1 110 1

From the graphyn =4 and A =3

From the matrix,d=2>1=r

Mo =0
4(3) +4(3)* = 2(1)(3)
4(3)
42
12
—3.3

Remarks

(i) This is an example where kg < Mg
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(ii) If you delete one vertex, the whole graph will be disconnected; so k = 1.
Three vertices will be affected, which is 3 = |3.5] . This is also the valence of a

vertex that can be deleted to produce the effect. It is also the number of vertices

that can be deleted to produce a trivial graph.
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CHAPTER 5

CONCLUSION

The study proposed a new definition of average vertex connectivity in spectral
form, using properties of adjacency matrix. This has been derived using several
lemmas and theorems, and the results verified are more consistent with average
connectivity. The proofs of the theorems indicate that this new measure of connec-
tivity is obviously easy to apply and calculate. It is also shown that the spectral
average connectivity is the upper bound of average connectivity defined by Beineke
et al. (2002), hence the upper bound for connectivity. It has many advantages
over that of Beineke et al. (2002) such that it is reliably used to prove several

results in graph theory, such as that of Beineke et al. (2002); (kg <n — 1).

Several lemmas preceding theorems are used to justify that the spectral defini-
tion of average connectivity is really a reliable global measure of connectivity.
Examples are done in different families of graphs such as complete graphs, trees,

to show the validity and hence the usability of this parameter.

Just as Beineke et al. (2002) reinforced the average vertex connectivity, k¢, with

bounds in combinatoric forms, this study has developed several upper bounds for
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spectral definition of average vertex connectivity, M, that can be verified very
more easily, making it much more attractive for applications. Cases and exam-
ples for verification are provided, using various graphs. Validity of the bounds in
spectral forms is done by comparing the tightness of spectral and combinatorial
upper bounds of average connectivity. Evidence is exhibited in the proofs that the
bounds in spectral forms are even tighter and easy to compute than those in com-

binatoric forms, making it spectacular over many global measures of connectivity.

Extension is made where the spectral definition of average connectivity is ex-
pressed in terms of tree properties, with given relevant examples, showing the
effects of deleting one vertex to disconnect the graph, and use of the spectral av-
erage connectivity to approximate the number of vertices affected after deleting
one. This makes the parameter more applicable in graph theory and to real life

situations.

While the constructions and calculations in this source are accurately done, they
by no means exhaust the possibilities. Production of Distance Matrix to identify
eccentricities remains a non-simplified task.

Further work can be done to combine eccentricity directly in the definition formula
to make adjacency matrix exclusively paramount in calculating average vertex con-

nectivity of any graph.
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